Protocol for the Examination of Specimens From Patients With Merkel Cell Carcinoma of the Skin

Protocol applies to Merkel cell carcinoma of cutaneous surfaces only.

Based on AJCC/UICC TNM, 7th edition
Protocol web posting date: June 2012

Procedures

• Biopsy (use of case summary optional)
• Excision
• Sentinel node examination
• Regional node examination

Authors

Priya Rao, MD, FCAP*
Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California

Bonnie L. Balzer, MD, PhD, FCAP
Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California

Bianca D. Lemos, MD
Division of Dermatology, University of Washington Medical Center, Seattle, Washington

Nanette J. Liegeois, MD
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland

Jennifer M. McNiff, MD, FASCP
Departments of Dermatology and Pathology, Yale University School of Medicine, New Haven, Connecticut

Paul Nghiem, MD, PhD
Division of Dermatology, University of Washington Medical Center, Seattle, Washington

Victor G. Prieto, MD, PhD, FCAP
Departments of Pathology and Dermatology, MD Anderson Cancer Center, University of Texas, Houston, Texas

M. Timothy Smith, MD
Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina

Bruce Robert Smoller, MD, FCAP
Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas

Mark R. Wick, MD, FCAP
Department of Pathology, University of Virginia Health System, Charlottesville, Virginia

David P. Frishberg, MD, FCAP†
Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California

For the Members of the Cancer Committee, College of American Pathologists

* Denotes primary author. † Denotes senior author. All other contributing authors are listed alphabetically.
© 2012 College of American Pathologists (CAP). All rights reserved.

The College does not permit reproduction of any substantial portion of these protocols without its written authorization. The College hereby authorizes use of these protocols by physicians and other health care providers in reporting on surgical specimens, in teaching, and in carrying out medical research for nonprofit purposes. This authorization does not extend to reproduction or other use of any substantial portion of these protocols for commercial purposes without the written consent of the College.

The CAP also authorizes physicians and other health care practitioners to make modified versions of the Protocols solely for their individual use in reporting on surgical specimens for individual patients, teaching, and carrying out medical research for non-profit purposes.

The CAP further authorizes the following uses by physicians and other health care practitioners, in reporting on surgical specimens for individual patients, in teaching, and in carrying out medical research for non-profit purposes: (1) **Dictation** from the original or modified protocols for the purposes of creating a text-based patient record on paper, or in a word processing document; (2) **Copying** from the original or modified protocols into a text-based patient record on paper, or in a word processing document; (3) The use of a computerized system for items (1) and (2), provided that the Protocol data is stored intact as a single text-based document, and is not stored as multiple discrete data fields.

Other than uses (1), (2), and (3) above, the CAP does not authorize any use of the Protocols in electronic medical records systems, pathology informatics systems, cancer registry computer systems, computerized databases, mappings between coding works, or any computerized system without a written license from CAP. Applications for such a license should be addressed to the SNOMED Terminology Solutions division of the CAP.

Any public dissemination of the original or modified Protocols is prohibited without a written license from the CAP.

The College of American Pathologists offers these protocols to assist pathologists in providing clinically useful and relevant information when reporting results of surgical specimen examinations of surgical specimens. The College regards the reporting elements in the “Surgical Pathology Cancer Case Summary” portion of the protocols as essential elements of the pathology report. However, the manner in which these elements are reported is at the discretion of each specific pathologist, taking into account clinician preferences, institutional policies, and individual practice.

The College developed these protocols as an educational tool to assist pathologists in the useful reporting of relevant information. It did not issue the protocols for use in litigation, reimbursement, or other contexts. Nevertheless, the College recognizes that the protocols might be used by hospitals, attorneys, payers, and others. Indeed, effective January 1, 2004, the Commission on Cancer of the American College of Surgeons mandated the use of the required data elements of the protocols as part of its Cancer Program Standards for Approved Cancer Programs. Therefore, it becomes even more important for pathologists to familiarize themselves with these documents. At the same time, the College cautions that use of the protocols other than for their intended educational purpose may involve additional considerations that are beyond the scope of this document.

The inclusion of a product name or service in a CAP publication should not be construed as an endorsement of such product or service, nor is failure to include the name of a product or service to be construed as disapproval.
CAP Merkel Cell Carcinoma Protocol Revision History

Version Code
The definition of the version code can be found at www.cap.org/cancerprotocols.

Version: MerkelCell 3.0.1.1

Summary of Changes
The following changes have been made since the February 2012 release.

Incisional Biopsy, Excision, Re-Excision, Lymphadenectomy

Note
The word “checklist” was changed to “case summary.”

Mitotic Index
“Mitotic Index” was changed to “Mitotic Rate.”

Explanatory Notes
“Mitotic Index” was changed to “Mitotic Rate” (note B).

The word “checklist” was changed to “case summary” and “protocol” (notes B and C, respectively).
Surgical Pathology Cancer Case Summary

Protocol web posting date: June 2012

MERKEL CELL CARCINOMA OF THE SKIN: Incisional Biopsy, Excision, Re-Excision, Lymphadenectomy

Note: Use of case summary is not required for punch or shave biopsies.

Select a single response unless otherwise indicated.

Procedure
___ Biopsy, incisional
___ Excision
___ Re-excision
___ Lymphadenectomy, sentinel node(s)
___ Lymphadenectomy, regional nodes (specify): ____________________________
___ Other (specify): ____________________________
___ Not specified

Macroscopic Tumor
___ Present
___ Not identified

Tumor Site
Specify (if known): ____________________________
___ Not specified

Tumor Size
Greatest dimension: ___ cm
+ Additional dimensions: ___ x ___ cm
___ Indeterminate (see “Comment”)

+ Tumor Thickness (Note A)
+ Thickness: ___ mm
+ Thickness: at least ___ mm (see “Comment”)

Margins

Peripheral Margins
___ Cannot be assessed
___ Uninvolved by carcinoma
 Distance of carcinoma from closest margin: ___ mm
 Specify location(s), if possible: ____________________________
___ Involved by carcinoma
 Specify location(s), if possible: ____________________________
Deep Margin
___ Cannot be assessed
___ Uninvolved by carcinoma
 Distance of carcinoma from closest margin: ___ mm
 Specify location(s), if possible: __________________________
___ Involved by carcinoma
 Specify location(s), if possible: __________________________

Lymph-Vascular Invasion
___ Not identified
___ Present
___ Indeterminate

Invasion of Bone, Muscle, Fascia, or Cartilage
___ Present (specify structures involved): ____________________
___ Not identified
___ Not applicable (e.g., for superficial biopsy)

+ Mitotic Rate (Note B)
 + ___ <1/mm²
 + ___ Specify: ___ /mm²

+ Tumor-Infiltrating Lymphocytes (Note C)
 + ___ Not identified
 + ___ Present, nonbrisk
 + ___ Present, brisk

+ Tumor Growth Pattern (Note D)
 + ___ Nodular
 + ___ Infiltrative

+ Presence of Second Malignancy (Note E)
 + ___ Present (specify type): __________________________
 + ___ Not identified

Lymph Nodes (required only if lymph nodes are present in the specimen) (Note F)
Number of sentinel nodes examined: ___
Total number of nodes examined (sentinel and nonsentinel): ___
Number of lymph nodes with metastases: ___

Macroscopic tumor:
___ Present
___ Not identified
___ Indeterminate

+ Size of largest metastatic focus: ___ mm

+ Extranodal extension:
 + ___ Present
 + ___ Not identified

+ Data elements preceded by this symbol are not required. However, these elements may be clinically important but are not yet validated or regularly used in patient management.
Pathologic Staging (pTNM) (Note G)

TNM Descriptors (required only if applicable) (select all that apply)
____ m (multiple)
____ r (recurrent)
____ y (posttreatment)

Primary Tumor (pT)
___ pTX: Primary tumor cannot be assessed
___ pT0: No evidence of primary tumor (eg, nodal/metastatic presentation without associated primary)
___ pTis: In situ primary tumor
___ pT1: Less than or equal to 2 cm maximum tumor dimension
___ pT2: Greater than 2 cm but not more than 5 cm maximum tumor dimension
___ pT3: Over 5 cm maximum tumor dimension
___ pT4: Primary tumor invades bone, muscle, fascia, or cartilage

Regional Lymph Nodes (pN)
___ pNX: Nodes not examined pathologically
___ pN0: Nodes negative by pathologic exam
___ pN1: Metastasis in regional lymph node(s)
 + ___ pN1a: Micrometastasis
 + ___ pN1b: Macrometastasis
___ pN2: In transit metastasis

Distant Metastasis (pM)
___ Not applicable
___ pM1: Metastasis beyond regional lymph nodes
 + ___ pM1a: Metastasis to skin, subcutaneous tissues, or distant lymph nodes
 + ___ pM1b: Metastasis to lung
 + ___ pM1c: Metastasis to all other visceral sites

Additional Pathologic Findings
+ Specify: ______________________________

Comment(s)
Explanatory Notes

A. Tumor Thickness
There are published1 and unpublished data from 3 independent prospective cohorts of Merkel cell carcinoma patients examining tumor thickness (measured in millimeters from the stratum granulosum to the deepest infiltrating tumor cells) as a prognostic indicator for outcome. All 3 centers have data that find that tumor thickness is more predictive of outcome than maximum tumor diameter (a current staging parameter). In 2 of the studies, the outcome thus far examined was nodal metastasis; the third study evaluated disease-specific survival.

If the tumor is transected at the deep margin of the specimen, the depth may be indicated as “at least _ mm” with a comment explaining the limitation of thickness assessment.

B. Mitotic Rate
The presence of >10 mitotic figures/high-power field (HPF) has been shown to correlate with large tumor size as well as a poor prognosis.2,3 The definition of what constitutes a high-power field was not specified in these reports; typically a 10X ocular and a 40X objective will yield a field area of approximately 0.15 mm2, but this will differ from microscope to microscope and should be determined on an individual basis by direct measurement and calculation of the field or manufacturer’s specifications. Reporting mitotic figures per square millimeter should have the advantage of greater reproducibility. The identification of no mitotic figures may be reported as “<1/mm2.”

Uniformly accepted thresholds for low- or high-risk mitotic counts are not established for either reporting method (number per HPF versus number per square millimeter), and this case summary item remains optional at this time.

It has also been suggested that an MIB-1 proliferation index of greater than 50\% is associated with a significantly worse prognosis.3

C. Tumor-Infiltrating Lymphocytes
Tumor-infiltrating lymphocytes (TILs) are defined as lymphocytes present at the interface of the tumor and the stroma. Some authors have suggested that the presence of TILs has been shown to portend a poor prognosis, especially when considered in concurrence with a tumor depth of >5 mm.4 However, there are conflicting data on the subject.3

In the absence of specific accepted guidelines for assessment of TILs, it is recommended in this protocol that, for purposes of uniformity, pathologists choosing to report TILs employ guidelines used for assessment of TILs as in cutaneous melanomas, given below:

\textbf{TILs not identified:} No lymphocytes present, or lymphocytes present but do not infiltrate tumor at all.

\textbf{TILs nonbrisk:} Lymphocytes infiltrate tumor only focally or not along the entire base of the vertical growth phase.

\textbf{TILs brisk:} Lymphocytes diffusely infiltrate the entire base of the dermal tumor (Figure, A) or the entire invasive component of the tumor (Figure, B).
Brisk tumor-infiltrating lymphocytes. A, Lymphocytes diffusely infiltrate the entire base of the invasive tumor. B, Lymphocytes infiltrate the entire invasive component of the carcinoma.

D. Tumor Growth Pattern
In a series of 156 patients with Merkel cell carcinoma, nodular tumor growth pattern was found on both uni- and multivariate analysis to correlate with better survival. Nodular pattern is defined as tumors with a relatively well-circumscribed interface with the surrounding tissue, typically composed of one or multiple nodules.

Infiltrative pattern is defined as tumors without a well-circumscribed interface with the surrounding tissue, composed of single cells, rows, trabeculae or strands of cells infiltrating through dermal collagen or deeper soft tissue.

A tumor exhibiting both nodular and infiltrative patterns should be classified as infiltrative.

E. Presence of Second Malignancy
Merkel cell carcinoma has been shown to be strongly associated with a number of cutaneous and hematological malignancies, chiefly squamous cell carcinomas and chronic lymphocytic leukemia. The largest series studying the relationship of second neoplasms with Merkel cell carcinoma spanned a period of 16 years and 67 patients, and found that the presence of any second neoplasm with Merkel cell carcinoma, whether concurrent or not, conferred a poor prognosis.

F. Lymph Node Examination
Clinical detection of nodal disease may be via inspection, palpation, and/or imaging. “Micrometastases” are defined by identification of metastasis on pathologic examination of sentinel or regional lymphadenectomy specimens. “Macrometastases” are defined as clinically detectable nodal metastases, confirmed by pathologic examination of therapeutic lymphadenectomy specimens. Because the pathologist may not have this clinical information, subdivision of N categories in the pathology report is optional.

In transit metastasis is defined as a tumor distinct from the primary lesion and located either (1) between the primary lesion and the draining node bed or (2) distal to the primary lesion.

Metastatic merkel cell carcinoma to the lymph node may be difficult to identify on routine hematoxylin-eosin (H&E)-stained sections. The use of immunostains has been shown to increase the sensitivity of identifying occult lymph node metastases. It is strongly recommended that at least 1 immunostain be
performed before designating a lymph node as negative. Depending on the experience or preference of the laboratory, stains may include but are not limited to AE1/AE3, CK116, Cam 5.2, CD56, CK20, synaptophysin, and/or chromogranin, many of which show a perinuclear dot-like staining pattern. All immunohistochemical results should be documented in the final pathology report.

Isolated tumor cells in a lymph node are classified as micrometastases (pN1a).

G. TNM Staging

Recent analysis of more than 4000 patients with Merkel cell carcinoma (MCC) in the National Cancer Database was used to derive a 4-tier staging system to be adopted by the American Joint Committee on Cancer (AJCC). Primary tumor dimension as a single variable was only weakly correlated with survival. The staging system takes into account tumor size (≤ 2 cm versus larger), nodal status, and metastatic disease for stratification.

Those patients with MCC presentations that are indeterminate should be categorized as TX. Merkel cell carcinoma in situ (ie, completely limited to epidermis or adnexal epithelium) is categorized as Tis. The T category of MCC is classified primarily by measuring the maximum dimension of the tumor with a threshold of ≤ 2 cm (T1), > 2 cm but ≤ 5 cm (T2), or > 5 cm (T3). Extracutaneous invasion by the primary tumor into bone, muscle, fascia, or cartilage is classified as T4.

Regional metastases most commonly present in the regional lymph nodes. A second staging definition is related to nodal tumor burden: microscopic versus macroscopic. Therefore, patients without clinical or radiologic evidence of lymph node metastases, but who have pathologically documented nodal metastases, are defined by convention as exhibiting “microscopic” or “clinically occult” nodal metastases. In contrast, MCC patients with both clinical evidence of nodal metastases and pathologic examination confirming nodal metastases are defined by convention as having “macroscopic” or “clinically apparent” nodal metastases.

Distant metastases are defined as metastases that have spread beyond the draining lymph node basin, including cutaneous, nodal, and visceral sites.

Primary Tumor (T)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>Primary tumor cannot be assessed</td>
</tr>
<tr>
<td>T0</td>
<td>No evidence of primary tumor (eg, nodal/metastatic presentation without associated primary)</td>
</tr>
<tr>
<td>Tis</td>
<td>In situ primary tumor</td>
</tr>
<tr>
<td>T1</td>
<td>Less than or equal to 2 cm maximum tumor dimension</td>
</tr>
<tr>
<td>T2</td>
<td>Greater than 2 cm but not more than 5 cm maximum tumor dimension</td>
</tr>
<tr>
<td>T3</td>
<td>Over 5 cm maximum tumor dimension</td>
</tr>
<tr>
<td>T4</td>
<td>Primary tumor invades bone, muscle, fascia, or cartilage</td>
</tr>
</tbody>
</table>

Regional Lymph Nodes (N)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cN0</td>
<td>Nodes not clinically detectable</td>
</tr>
<tr>
<td>cN1</td>
<td>Nodes clinically detectable</td>
</tr>
<tr>
<td>pNX</td>
<td>Regional lymph nodes not examined pathologically</td>
</tr>
<tr>
<td>pN0</td>
<td>Nodes negative by pathologic examination</td>
</tr>
<tr>
<td>pN1</td>
<td>Metastasis in regional lymph node(s)</td>
</tr>
<tr>
<td>pN1a</td>
<td>Micrometastasis</td>
</tr>
<tr>
<td>pN1b</td>
<td>Macrometastasis</td>
</tr>
<tr>
<td>pN2</td>
<td>In transit metastasis</td>
</tr>
</tbody>
</table>
Distant Metastasis (M)
M0 No distant metastasis
M1 Metastasis beyond regional lymph nodes
M1a Metastasis to skin, subcutaneous tissues, or distant lymph nodes
M1b Metastasis to lung
M1c Metastasis to all other visceral sites

Stage Groupings
Patients with primary Merkel cell carcinoma with no evidence of regional or distant metastases (either clinically or pathologically) are divided into 2 stages: stage I for primary tumors ≤2 cm in size and stage II for primary tumors >2 cm in size. Stages I and II are further divided into A and B subcategories based on method of nodal evaluation. Patients who have pathologically proven node-negative disease (by microscopic evaluation of their draining lymph nodes) have improved survival (substaged as “A”) as compared with patients who are only evaluated clinically (substaged as “B”). Stage II has an additional substage (“IIC”) for tumors with extracutaneous invasion (T4) and negative node status regardless of whether the negative node status was established microscopically or clinically. Stage III is also divided into A and B categories for patients with microscopically positive and clinically occult nodes (“IIIA”) and macroscopic nodes (“IIIB”). There are no subgroups of stage IV Merkel cell carcinoma.

Stage Groupings
Stage 0 Tis cN0, pN0/pNx M0
Stage IA T1 cN0, pN0 M0
Stage IB T1 cN0, pNx M0
Stage IIA T2/T3 cN0, pN0 M0
Stage IIB T2/T3 cN0, pNx M0
Stage IIC T4 cN0, pN0/pNx M0
Stage IIIA Any T cN0, pN1 M0
Stage IIIB Any T cN1, pN1/N2 M0
Stage IV Any T Any N M1

References