Protocol for the Examination of Specimens From Patients With Tumors of the Brain/Spinal Cord

Protocol applies to all primary neoplasms of the brain/spinal cord/peripheral nerve and pituitary. Metastatic tumors are not included. The CAP bone protocol should be used for primary tumors of bone.

No AJCC/UICC TNM Staging System
Protocol web posting date: December 2014

Procedures
• Biopsy/Resection

Authors
Daniel J. Brat, MD, PhD
 Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, Georgia
Joseph E. Parisi, MD
 Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
Bette K. DeMasters, MD
 Department of Pathology, University of Colorado Health Sciences Center, Denver, Colorado
Suzanne Z. Powell, MD
 Department of Pathology, The Methodist Hospital, Houston, Texas
Adriana Olar, MD
 Department of Pathology, The Methodist Hospital, Houston, Texas
Aaron S. Wagner, MD
 Department of Pathology, Orlando Regional Medical Center, Orlando, Florida
Matthew J. Schniederjan MD
 Department of Pathology, Children’s Healthcare of Atlanta, Atlanta, Georgia
Keith Ligon, MD, PhD
 Department of Pathology, Brigham and Women’s Hospital, Dana Farber Cancer Institute, Boston, Massachusetts
Muchou Joe Ma, MD
 Center For Diagnostic Pathology, Florida Hospital, Orlando, Florida
Eyas M. Hattab, MD
 Department of Pathology, Indiana University Medical Center, Indianapolis, Indiana
Cynthia T. Welsh, MD
 Department of Pathology, Medical University of South Carolina, Charleston, South Carolina
For the Members of the Cancer Committee, College of American Pathologists

Previous contributors: Gary S. Pearl, MD, PhD; Saeid Movahedi-Lankarani, MD; Nancy C. Karpinski, MD; Kyung-Whan Min, MD; Steven C. Bauserman, MD; Lawrence A. Hansen, MD; Charles Kerber, MD; Dylan V. Miller, MD; Philip J. Boyer, MD, PhD; Elizabeth J. Cochran, MD; Mark L. Cohen, MD; David Dolinak, MD; Rodney D. McComb, MD; Roger E. McLendon, MD; Richard A. Frayson, MD; Harry V. Vinters, MD; Anthony T. Yachnis, MD
The College does not permit reproduction of any substantial portion of these protocols without its written authorization. The College hereby authorizes use of these protocols by physicians and other health care providers in reporting on surgical specimens, in teaching, and in carrying out medical research for nonprofit purposes. This authorization does not extend to reproduction or other use of any substantial portion of these protocols for commercial purposes without the written consent of the College.

The CAP also authorizes physicians and other health care practitioners to make modified versions of the Protocols solely for their individual use in reporting on surgical specimens for individual patients, teaching, and carrying out medical research for non-profit purposes.

The CAP further authorizes the following uses by physicians and other health care practitioners, in reporting on surgical specimens for individual patients, in teaching, and in carrying out medical research for non-profit purposes: (1) **Dictation** from the original or modified protocols for the purposes of creating a text-based patient record on paper, or in a word processing document; (2) **Copying** from the original or modified protocols into a text-based patient record on paper, or in a word processing document; (3) The use of a **computerized system** for items (1) and (2), provided that the Protocol data is stored intact as a single text-based document, and is not stored as multiple discrete data fields.

Other than uses (1), (2), and (3) above, the CAP does not authorize any use of the Protocols in electronic medical records systems, pathology informatics systems, cancer registry computer systems, computerized databases, mappings between coding works, or any computerized system without a written license from the CAP.

Any public dissemination of the original or modified protocols is prohibited without a written license from the CAP.

The College of American Pathologists offers these protocols to assist pathologists in providing clinically useful and relevant information when reporting results of surgical specimen examinations of surgical specimens. The College regards the reporting elements in the “Surgical Pathology Cancer Case Summary” portion of the protocols as essential elements of the pathology report. However, the manner in which these elements are reported is at the discretion of each specific pathologist, taking into account clinician preferences, institutional policies, and individual practice.

The College developed these protocols as an educational tool to assist pathologists in the useful reporting of relevant information. It did not issue the protocols for use in litigation, reimbursement, or other contexts. Nevertheless, the College recognizes that the protocols might be used by hospitals, attorneys, payers, and others. Indeed, effective January 1, 2004, the Commission on Cancer of the American College of Surgeons mandated the use of the required data elements of the protocols as part of its Cancer Program Standards for Approved Cancer Programs. Therefore, it becomes even more important for pathologists to familiarize themselves with these documents. At the same time, the College cautions that use of the protocols other than for their intended educational purpose may involve additional considerations that are beyond the scope of this document.

The inclusion of a product name or service in a CAP publication should not be construed as an endorsement of such product or service, nor is failure to include the name of a product or service to be construed as disapproval.
CAP Brain/Spinal Cord Protocol Revision History

Version Code
The definition of the version code can be found at www.cap.org/cancerprotocols.

Version: Brain/Spinal Cord 3.1.0.1

Summary of Changes
The following changes have been made since the January 2013 release.

Biopsy/Resection

Ancillary Studies
The following note was added:

Note: For biomarker reporting for gliomas and embryonal tumors, the CAP CNS Biomarker Template should be used. Pending biomarker studies should be listed in the Comments section of this report.

Important Note
This protocol should be applied to all primary neoplasms of the brain/spinal cord/peripheral nerve and pituitary, and it should be applied at initial biopsy/resection. Metastatic tumors are not included. There is no American Joint Committee on Cancer / International Union Against Cancer TNM classification system for primary nervous system neoplasms. The World Health Organization (WHO) grading system is recommended.
Surgical Pathology Cancer Case Summary

Protocol web posting date: December 2014

BRAIN/SPINAL CORD/NERVE: Biopsy/Resection

Select a single response unless otherwise indicated.

Tumor Site (select all that apply) (Note A)

___ Skull
 + Specify precise location, if known: ______________________

___ Dura
 + Specify precise location, if known: ______________________

___ Leptomeninges
 + Specify precise location, if known: ______________________

___ Brain
 ___ Cerebral lobes (specify precise location, if known: _____________)
 ___ Basal ganglia
 ___ Thalamus
 ___ Hypothalamus
 ___ Pineal
 ___ Cerebellum
 ___ Cerebellopontine angle
 ___ Other (specify, if known: ______________________)

___ Sellar/suprasellar/pituitary

___ Cranial nerve
 + Specify I-XII, if known: ______________________

___ Ventricle
 + Specify precise location, if known: ______________________

___ Brain stem
 + Specify precise location, if known: ______________________

___ Spine (vertebral column)
 + Specify precise location, if known: ______________________

___ Spinal Cord
 + Specify precise location, if known: ______________________

___ Spinal nerve root(s)
 + Specify precise location, if known: ______________________

___ Peripheral nerve
 + Specify site, if known: ______________________

___ Ganglion
 + Specify site, if known: ______________________

___ Other (specify): ______________________

___ Not specified

Laterality (Note A)

___ Right
___ Left
___ Midline
___ Bilateral
___ Not specified
___ Not applicable

+ Data elements preceded by this symbol are not required. These elements may be clinically important but are not yet validated or regularly used in patient management.
Procedure (Note B)
___ Open biopsy
___ Resection
___ Stereotactic biopsy
___ Other (specify): _____________________
___ Not specified

Histologic Type (WHO classification of tumors of the central nervous system) (Note C)
Specify: _____________________
___ Cannot be determined

Histologic Grade (WHO histologic grade) (Note D)
Specify: _____________________
___ Not Applicable
___ Cannot be determined

+ Specimen Size, gross description (Note E)
+ ___ Greatest dimension: ___ cm
+ ___ Additional dimensions: ___ x ___ cm (for fragmented tissue, an aggregate size may be given)
+ ___ Cannot be determined (see Comment)

+ Specimen Handling (select all that apply) (Note F)
+ ___ Squash/smear/touch preparation
+ ___ Frozen section
+ ___ Tissue for electron microscopy
+ ___ Frozen tissue
+ ___ Unfrozen, formalin-fixed for permanent paraffin sections
+ ___ Other (specify): _____________________
+ ___ Not specified

+ Margins (malignant peripheral nerve sheath tumor only) (Note G)
+ ___ Not Applicable
+ ___ Cannot be assessed
+ ___ Margins not involved by tumor
 + Distance of tumor from closest margin: ___ cm
 + Specify, if possible: _____________________
+ ___ Margins involved by tumor
 + Specify, if possible: _____________________

+ Ancillary Studies, if applicable (select all that apply) (Note H)
 Note: For biomarker reporting for gliomas and embryonal tumors, the CAP CNS Biomarker Template should be used. Pending biomarker studies should be listed in the Comments section of this report.
 + Designate block for future studies: _____

+ Special Stains
 + Specify: _____________________
 + ___ None performed

+ Immunohistochemistry
 + Specify: _____________________
 + ___ None performed

+ Data elements preceded by this symbol are not required. These elements may be clinically important but are not yet validated or regularly used in patient management.
+ Electron Microscopy
+ Specify: ______________________
+ ___ None performed

+ Molecular Genetic Studies
+ Specify: ______________________
+ ___ None performed
+ ___ Other (specify): ________________

+ Additional Pathologic Findings
+ Specify: ______________________

+ History of Previous Tumor/Familial Syndrome (Note I)
+ ___ None known
+ ___ Known (specify: ______________________)
+ ___ Not specified

+ Neuroimaging Findings (Note J)
+ Specify: ______________________
+ ___Not available

+ Focality (Note A, J)
+ ___ Multifocal
+ ___ Unifocal
+ ___ Cannot be determined

+ Preresection Treatment (select all that apply) (Note K)
+ ___ No therapy
+ ___ Chemotherapy
+ ___ Radiation therapy
+ ___ Corticosteroids
+ ___ Embolization
+ ___ Therapy performed, type not specified
+ ___ Unknown

+ Treatment Effect (Note K)
+ ___ Not identified
+ ___ Present
 + Specify percent of tumor that is necrotic: ___%
+ ___ Cannot be determined

+ Comment(s)

+ Data elements preceded by this symbol are not required. These elements may be clinically important but are not yet validated or regularly used in patient management.
Explanatory Notes

A. Primary Tumor Site, Laterality, and Focality
Since the anatomic site of a neoplasm may correlate with tumor type and prognosis, it should be recorded, if known.

- For skull location, specify bone involved, such as frontal, parietal, temporal, occipital, etc, if known. The College of American Pathologists (CAP) cancer protocol for bone\(^1\) should be used for primary tumors of bone (Note L).
- For dural location, indicate cerebral convexity/lobe, falx, tentorium, posterior fossa, sphenoid wing, skull base, spinal, or other, if known.
- For leptomeningeal location, indicate cerebral convexity/lobe, posterior fossa, spinal, or other, if known.
- For cerebral lobe location, indicate frontal, temporal, parietal, or occipital lobe, if known. For a deep gray matter location, indicate basal ganglia, thalamus, or hypothalamus.
- For an intraventricular location, indicate lateral, third, fourth, or aqueduct, if known.
- For a brain stem location, indicate midbrain, pons, or medulla, if known.
- For spine (vertebral bone), spinal cord, spinal root or spinal ganglion, indicate level (eg, C5, T2, L3), if known. The CAP cancer protocol for bone\(^1\) should be used for primary tumors of bone.

The laterality of a neoplasm should be indicated as involving the left or right side of the central nervous system (CNS) structure. In some instances, such as tumors arising in the pineal, pituitary, third ventricular, and other locations, the tumor will be situated in the midline. A tumor would be considered bilateral if it involved both sides of the brain, such as glioblastoma extending through the corpus callosum to involve the left and right hemispheres. The focality of a lesion should be indicated, if possible. Multifocality implies that multiple, noncontiguous lesions are noted on neuroimaging, such as might be seen in primary CNS lymphoma. A solitary lesion would be considered unifocal.

B. Procedure
It is useful to know if the specimen was procured by open craniotomy or stereotactic biopsy. Since tumors may be heterogeneous, adequate sampling is an issue. The reliability of the prognostic information derived from such specimens may vary depending on how the specimen was obtained.

C. Histologic Type
Classification should be made according to the WHO classification of tumors of the nervous system\(^2,3\) whenever possible. The list below contains WHO 2007 diagnostic entities:

Astrocytic Tumors
- Pilocytic astrocytoma (WHO grade I)
- Pilomyxoid astrocytoma (WHO grade II)
- Subependymal giant cell astrocytoma (WHO grade I)
- Pleomorphic xanthoastrocytoma (WHO grade II)
- Pleomorphic xanthoastrocytoma with anaplastic features (WHO grade not assigned)
- Diffuse astrocytoma (WHO grade II)
 - Fibrillary astrocytoma (WHO grade II)
 - Protoplasmic astrocytoma (WHO grade II)
 - Gemistocytic astrocytoma (WHO grade II)
- Anaplastic astrocytoma (WHO grade III)
- Glioblastoma (WHO grade IV)
 - Giant cell glioblastoma (WHO grade IV)
 - Gliosarcoma (WHO grade IV)
- Gliomatosis cerebri (usually WHO grade III; diagnosis requires clinical-pathological correlation)
- Astrocytoma, not otherwise characterized (WHO grades I-IV)
Oligodendrogial Tumors
Oligodendroglioma (WHO grade II)
Anaplastic oligodendroglioma (WHO grade III)

Oligoastrocytic Tumors (mixed glioma)
Oligoastrocytoma (WHO grade II)
Anaplastic oligoastrocytoma (WHO grade III)

Ependymal Tumors
Subependymoma (WHO grade I)
Myxopapillary ependymoma (WHO grade I)
Ependymoma (WHO grade II)
 Cellular ependymoma (WHO grade II)
 Papillary ependymoma (WHO grade II)
 Clear cell ependymoma (WHO grade II)
 Tanyctic ependymoma (WHO grade II)
Anaplastic ependymoma (WHO grade III)

Choroid Plexus Tumors
Choroid plexus papilloma (WHO grade I)
Atypical choroid plexus papilloma (WHO grade II)
Choroid plexus carcinoma (WHO grade III)

Other Neuroepithelial Tumors
Astroblastoma (WHO grade not assigned)
Chordoid glioma of the third ventricle (WHO grade II)
Angiocentric glioma (WHO grade I)

Neuronal and Mixed Neuronal-Glial Tumors
Dysplastic gangliocytoma of cerebellum (Lhermitte-Duclos) (WHO grade I)
Desmoplastic infantile astrocytoma/gangliogioma (WHO grade I)
Dysembryoplastic neuroepithelial tumor (WHO grade I)
Gangliocytoma (WHO grade I)
Gangliogioma (WHO grade I)
Anaplastic gangliogioma (WHO grade III)
Central neurocytoma (WHO grade II)
Extraventricular neurocytoma (WHO grade II)
Cerebellar liponeurocytoma (WHO grade II)
Papillary glioneuronal tumor (PGNT) (WHO grade I)
Rosette-forming glioneuronal tumor of the fourth ventricle (RGNT) (WHO grade I)
Paraganglioma of the spinal cord (WHO grade I)

Tumors of the Pineal Region
Pineal parenchymal tumors
 Pineocytoma (WHO grade I)
 Pineal parenchymal tumor of intermediate differentiation (WHO II-II-III)
 Pineoblastoma (WHO grade IV)
Papillary tumor of the pineal region (WHO grade II-III)
Embryonal Tumors
Medulloblastoma, not otherwise characterized (WHO grade IV)
 Desmoplastic/nodular medulloblastoma (WHO grade IV)
 Medulloblastoma with extensive nodularity (WHO grade IV)
 Anaplastic medulloblastoma (WHO grade IV)
 Large cell medulloblastoma (WHO grade IV)
Central nervous system (CNS) primitive neuroectodermal tumor (PNET) (WHO grade IV)
 Medulloepithelioma (WHO grade IV)
 Neuroblastoma (WHO grade IV)
 Ganglioneuroblastoma (WHO grade IV)
 Ependymoblastoma (WHO grade IV)
Atypical teratoid/rhabdoid tumor (WHO grade IV)

Tumors of Cranial and Paraspinal Nerves
Schwannoma (WHO grade I)
 Cellular (WHO grade I)
 Plexiform (WHO grade I)
 Melanotic (WHO grade I)
Neurofibroma (WHO grade I)
 Plexiform (WHO grade I)
Perineurioma (WHO grade I)
 Intraneural perineurioma (WHO grade I)
 Soft tissue perineurioma (WHO grade I)
Malignant perineurioma (WHO grade III)
Ganglioneuroma (WHO grade I)
Malignant peripheral nerve sheath tumor (MPNST) (WHO grade II-IV)
 Epithelioid (WHO grade II-IV)
 MPNST with divergent mesenchymal and/or epithelial differentiation (WHO grade II-IV)

Tumors of the Meninges/Meningothelial Cells
Meningioma (WHO grade I)
 Meningothelial (WHO grade I)
 Fibrous (fibroblastic) (WHO grade I)
 Transitional (mixed) (WHO grade I)
 Psammomatous (WHO grade I)
 Angiomatous (WHO grade I)
 Microcystic (WHO grade I)
 Secretory (WHO grade I)
 Lymphoplasmacyte-rich (lymphoplasmacytic) (WHO grade I)
 Metaplastic (WHO grade I)
Atypical meningioma (WHO grade II)
 Clear cell meningioma (WHO grade II)
 Chordoid meningioma (WHO grade II)
 Anaplastic meningioma (WHO grade III)
 Papillary meningioma (WHO grade III)
 Rhabdoid meningioma (WHO grade III)
Mesenchymal (Nonmeningothelial) Tumors

Note: The CAP cancer protocols for bone\(^1\) and soft tissue\(^4\) should be used for those tumors that are primary to bone and soft tissue, respectively (Note L).

- Lipoma
- Angiolipoma
- Hibernoma
- Liposarcoma (intracranial)
- Solitary fibrous tumor
- Fibrosarcoma
- Malignant fibrous histiocytoma
- Leiomyoma
- Leiomyosarcoma
- Rhabdomyoma
- Rhabdomyosarcoma
- Chondroma
- Chondrosarcoma
- Osteoma
- Osteosarcoma
- Osteochondroma
- Hemangioma
- Epithelioid hemangioendothelioma
- Hemangiopericytoma
- Anaplastic hemangiopericytoma
- Angiosarcoma
- Kaposi sarcoma
- Chordoma
- Mesenchymal, nonmeningothelial tumor, other (specify type, if possible)
- Sarcoma, primary CNS (specify type, if possible)

Primary Melanotic Tumors
- Diffuse melanocytosis
- Melanocytoma
- Malignant melanoma
- Meningeal melanomatosi

Tumors of Uncertain Histogenesis
- Hemangioblastoma (WHO grade I)

Lymphoma and Hematopoietic Tumors
- Malignant lymphoma (specify type, if possible)
- Plasmacytoma
- Granulocytic sarcoma
- Hematopoietic neoplasm, other (specify type, if possible)
Germ Cell Tumors
Germinoma
Embryonal carcinoma
Yolk sac tumor
Choriocarcinoma
Teratoma, mature
Teratoma, immature
Teratoma with malignant transformation
Malignant mixed germ cell tumor (specify components, eg, germinoma, embryonal, yolk sac, choriocarcinoma, teratoma)

Tumors of the Sellar Region
Craniopharyngioma (WHO grade I)
Craniopharyngioma, adamantinomatous (WHO grade I)
Craniopharyngioma, papillary (WHO grade I)
Granular cell tumor (WHO grade I)
Pituicytoma (WHO grade I)
Spindle cell oncocytoma (WHO grade I)
Pituitary adenoma (specify nonfunctional or hormone expression, if known)
Pituitary carcinoma
Pituitary hyperplasia

Other/Nonclassifiable
Other(s) (specify)
Malignant neoplasm, type cannot be determined
Pediatric low grade glioma (pLGG) not otherwise specified (NOS) (Grade I/II)

D. Histologic Grade
Below is a list of possible WHO grades for central nervous system tumors. The WHO grading\(^2\)\(^,\)\(^3\) of some of the more common CNS tumors is shown in Table 1. There is no formal TNM-based classification and staging system for CNS tumors.

WHO Grades for Tumors of the Nervous System
WHO grade I
WHO grade II
WHO grade III
WHO grade IV
WHO grade not assigned
<table>
<thead>
<tr>
<th>Tumor Group</th>
<th>Tumor Type</th>
<th>Grade I</th>
<th>Grade II</th>
<th>Grade III</th>
<th>Grade IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrocytic tumors</td>
<td>Diffuse astrocytoma</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anaplastic astrocytoma</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glioblastoma</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pilocytic astrocytoma</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pilomyxoid astrocytoma</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subependymal giant cell astrocytoma</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pleomorphic xanthoastrocytoma</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Oligodendroliomas</td>
<td>Oligodendrolioma</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anaplastic oligodendrolioma</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Oligoastrocytomas</td>
<td>Oligoastrocytoma</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anaplastic oligoastrocytoma</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ependymal tumors</td>
<td>Ependymoma</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anaplastic ependymoma</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subependymoma</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Myxopapillary ependymoma</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Choroid plexus tumors</td>
<td>Choroid plexus papilloma</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atypical choroid plexus papilloma</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Choroid plexus carcinoma</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Other neuroepithelial tumors</td>
<td>Angio-centric glioma</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chordoid glioma of the third ventricle</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Neuronal-glial tumors</td>
<td>Gangliocytoma</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desmoplastic infantile ganglioglioma/ astrocytoma (DIG)</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dysembryoplastic neuroepithelial tumor (DNET)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ganglioglioma</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anaplastic ganglioglioma</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Central neurocytoma</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extraventricular neurocytoma</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cerebellar liponeurocytoma</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Papillary glioneuronal tumor (PGNT)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Rosette-forming glioneuronal tumor of the fourth ventricle (RGNT)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Paraganglioma of the spinal cord</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Tumor Group

<table>
<thead>
<tr>
<th>Tumor Group</th>
<th>Tumor Type</th>
<th>Grade I</th>
<th>Grade II</th>
<th>Grade III</th>
<th>Grade IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pineal parenchymal tumors</td>
<td>Pineocytoma</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pineal parenchymal tumor of intermediate differentiation</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pineoblastoma</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Papillary tumor of the pineal region</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Embryonal tumors</td>
<td>Medulloblastoma</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CNS primitive neuroectodermal tumor</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medullopithelioma</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neuroblastoma</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ganglioneuroblastoma</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ependymoblastoma</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atypical teratoid/rhabdoid tumor</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cranial and peripheral nerve tumors</td>
<td>Schwannoma</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neurofibroma</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Perineurioma</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Malignant peripheral nerve sheath tumors (MPNST)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Meningeal tumors</td>
<td>Meningioma</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atypical meningioma</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clear cell meningioma</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chordoid meningioma</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anaplastic meningioma</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Papillary meningioma</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rhabdoid meningioma</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesenchymal tumors(^8,9)</td>
<td>(Named as soft tissue counterpart)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Hemangiopericytoma</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumors of uncertain histogenesis</td>
<td>Hemangioblastoma</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tumor histology and grade are strong predictors of clinical behavior for astrocytomas and meningiomas. Tables 2 and 3 list the grading criteria for these common CNS tumor types.\(^2,3\)
Table 2. WHO Grading System for Diffuse Infiltrating Astrocytomas

<table>
<thead>
<tr>
<th>WHO Grade</th>
<th>WHO Designation</th>
<th>Histologic Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>Diffuse astrocytoma</td>
<td>Nuclear atypia</td>
</tr>
<tr>
<td>III</td>
<td>Anaplastic astrocytoma</td>
<td>Nuclear atypia and mitotic figures</td>
</tr>
<tr>
<td>IV</td>
<td>Glioblastoma</td>
<td>Nuclear atypia, mitotic figures, and endothelial proliferation and/or necrosis</td>
</tr>
</tbody>
</table>

Table 3. WHO Grading of Meningiomas

<table>
<thead>
<tr>
<th>WHO grade I</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign meningioma</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WHO grade II</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Atypical meningioma</td>
<td></td>
</tr>
<tr>
<td>Mitotic figures ≥4/10 high-power fields (HPF)</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>At least 3 of 5 parameters:</td>
<td></td>
</tr>
<tr>
<td>Sheeting architecture (loss of whorling and/or fascicles)</td>
<td></td>
</tr>
<tr>
<td>Small cell formation</td>
<td></td>
</tr>
<tr>
<td>Macronucleoli</td>
<td></td>
</tr>
<tr>
<td>Hypercellularity</td>
<td></td>
</tr>
<tr>
<td>Spontaneous necrosis</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Brain invasion</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Clear cell meningioma</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Chordoid meningioma</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WHO grade III</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaplastic (malignant) meningioma</td>
<td></td>
</tr>
<tr>
<td>Mitotic figures ≥ 20/10 HPF</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Frank anaplasia (sarcoma, carcinoma, or melanoma-like histology)</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Papillary meningioma</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Rhabdoid meningioma</td>
<td></td>
</tr>
</tbody>
</table>

E. Specimen Size
For most CNS tumors, specimen size is not used for staging or grading. However, in heterogeneous lesions, tissue sampling may become important, and the size of the biopsy relative to the overall size of the lesion provides useful information concerning whether the sample is representative of the overall lesion. The total specimen size may not correspond to the tumor size within the specimen, and this discrepancy should be noted.
F. Specimen Handling, Triage, and Special Procedures

It may be necessary to divide biopsy/resection tissue into portions for the following procedures:

- Squash/smear/touch preparations
- Frozen sections
- Unfrozen, routine, permanent paraffin sections (essential to avoid artifacts of freezing tissue)
- Electron microscopy (retain a small portion in glutaraldehyde, or "embed and hold" for electron microscopy, if necessary)
- Frozen tissue, for possible molecular diagnostic studies (freeze fresh tissue as soon as possible and store)
- Other (microbiology, flow cytometry, cytogenetics, molecular diagnostics)

Since cytologic details are essential for interpreting CNS neoplasms, previously frozen tissue with its inherent artifacts is suboptimal, especially for subclassifying and grading gliomas. Recommendations for optimal freezing and frozen sections from CNS tissue have been published. It is imperative to retain tissue that has not been previously frozen for permanent sections. Avoid using sponges in cassettes because they produce angular defects that resemble vascular/luminal spaces in the final sections. It is more appropriate to wrap small biopsies in lens paper or into tissue sacs prior to submitting in cassettes. If frozen and permanent sections are nondiagnostic, tissue that was retained in glutaraldehyde may be submitted for additional paraffin sections.

In touch, smear, and squash preparations, the presence of cells with long delicate processes is suggestive of a primary CNS cell type. The identification of macrophages is important since a macrophage-rich lesion is more likely a subacute infarct or demyelination, rather than a neoplasm.

If an infectious etiology is suspected, the neurosurgeon should be alerted to submit a fresh sample to microbiology to be processed for bacterial, fungal, and/or viral cultures.

If a lymphoproliferative disorder is suspected and sufficient tissue is available, a portion of fresh tissue should be set aside for appropriate workup.

G. Margins

With the exception of malignant peripheral nerve sheath tumors, resection margins provide no prognostic information and generally are not required for most CNS neoplasms.

H. Ancillary Studies

Immunohistochemical and molecular genetic studies are often performed to assist with diagnosis, prognosis, or to predict therapeutic response. For information regarding biomarker testing for gliomas and embryonal tumors, the CAP CNS Biomarker Template should be referenced.

I. Relevant History

Patient Age

Patient age may be important for predicting tumor behavior and is predictive of survival in many malignant CNS neoplasms. For diffusely infiltrating astrocytomas, age and histologic grade are the two strong predictors of patient outcome, with age greater than 50 years and high-grade histology serving as negative indicators.

Duration of Symptoms

A long clinical history of neurological symptoms prior to the diagnosis of a CNS tumor is suggestive of a slowly growing neoplasm. Alternatively, a sudden onset of clinical symptoms or a rapidly progressive neurological deficit may indicate a high-grade tumor, hemorrhage, infarct, or active demyelinating disease.
Previous Diagnoses or CNS Biopsies
Knowledge of the presence or absence of previous intracranial or extracranial disease (eg, immunosuppression, previous CNS or other primary neoplasm) is essential for specimen interpretation. If a previous tumor is included in the differential diagnosis, it is useful to have microscopic slides of the lesion available for review and comparison.

Family History of Cancer or Primary CNS Tumors
Several genetic conditions/syndromes are associated with an increased predisposition to the development of specific forms of CNS neoplasms (eg, neurofibromatosis types 1 and 2, Turcot/Lynch, tuberous sclerosis, von Hippel-Lindau, Cowden, Li-Fraumeni, and Gorlin syndromes).

J. Neuroimaging Findings
Knowledge of neuroimaging features is extremely helpful in specimen interpretation. A differential diagnosis may be generated based on patient age, tumor location, and neuroimaging features. Neuroimaging also can be helpful in providing correlation with or highlighting discrepancy with pathologic diagnosis (eg, contrast enhancement with hypocellularity). A close collaboration with the neuroradiologist and neurosurgeon is essential.

K. Preoperative Treatment and Treatment Effect
Knowledge of preoperative treatment, including radiation therapy, chemotherapy, corticosteroid therapy, embolization, and other therapy, is helpful for specimen interpretation. In particular, prior radiation therapy or radiosurgery may alter the interpretation of specimens in which there are increased cellular atypia, decreased proliferative activity, or large areas of radiation-induced change (eg, coagulative [nonpalsading] necrosis, vascular hyalinization, and gliosis). The addition of chemotherapy to radiation, either concurrently or in the adjuvant setting, may exacerbate the side effects of radiation. For patients with malignant gliomas, the presence and degree of radiation necrosis appear to be of prognostic significance. Tumors that show evidence of radiation necrosis are associated with a longer survival, and the degree of necrosis appears to be prognostically significant. Corticosteroid treatment can alter the pathologic features of some CNS diseases. In particular, the treatment of primary CNS lymphoma with corticosteroids can be associated with widespread tumor necrosis or infiltration by macrophages, which may limit or misguide interpretation. Embolization of certain tumor types, especially meningiomas, may introduce histologic changes in the neoplasm.

L. Mesenchymal Tumors
Mesenchymal tumors vary widely in grade, from benign tumors (WHO grade I) to highly malignant sarcomas (WHO grade III to IV). The classification and grading of these lesions are performed corresponding to the WHO monograph, *Tumours of Soft Tissue and Bone*. The CAP cancer protocols for bone and soft tissue should be used for those tumors that are primary to bone and soft tissue, respectively.

References

