Template for Reporting Results of Monitoring Tests for Patients With Chronic Myelogenous Leukemia (BCR-ABL1+)

Template web posting date: December 2014

Authors
Todd W. Kelley, MD, FCAP
 University of Utah and ARUP Laboratories, Salt Lake City, Utah
Randa Alsabeh, MD, FCAP
 Department of Pathology, Kaiser Permanente Medical Center, Los Angeles, California
Daniel A. Arber, MD
 Department of Pathology, Stanford University School of Medicine, Stanford, California
Christine Gibson, CTR
 Moffitt Cancer Center, Tampa, Florida
Daniel Jones, MD, PhD, FCAP
 Department of Pathology, Quest Diagnostics Nichols Institute, Chantilly, Virginia
Joseph D. Khoury, MD, FCAP
 Department Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
Bruno C. Medeiros, MD
 Stanford University School of Medicine, Stanford, California
Dennis P. O'Malley, MD, FCAP
 Department of Pathology, Clarient Pathology Services, Aliso Viejo, California
Keyur P. Patel, MD, PhD, FCAP
 Department Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
Monika Pilichowska, MD, FCAP
 Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, Massachusetts
Mohammad A. Vasef, MD, FCAP
 Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
Jeremy Wallentine, MD, FCAP
 Department of Pathology, Intermountain Healthcare, Salt Lake City, Utah
James L. Zehnder, MD
 Department of Pathology, Stanford University School of Medicine, Stanford, California
For the Members of the Cancer Biomarker Reporting Committee, College of American Pathologists
The College does not permit reproduction of any substantial portion of these templates without its written authorization. The College hereby authorizes use of these templates by physicians and other health care providers in reporting results of biomarker testing on patient specimens, in teaching, and in carrying out medical research for nonprofit purposes. This authorization does not extend to reproduction or other use of any substantial portion of these templates for commercial purposes without the written consent of the College.

The CAP also authorizes physicians and other health care practitioners to make modified versions of the templates solely for their individual use in reporting results of biomarker testing for individual patients, teaching, and carrying out medical research for non-profit purposes.

The CAP further authorizes the following uses by physicians and other health care practitioners, in reporting on surgical specimens for individual patients, in teaching, and in carrying out medical research for non-profit purposes: (1) Dictation from the original or modified templates for the purposes of creating a text-based patient record on paper, or in a word processing document; (2) Copying from the original or modified templates into a text-based patient record on paper, or in a word processing document; (3) The use of a computerized system for items (1) and (2), provided that the template data is stored intact as a single text-based document, and is not stored as multiple discrete data fields.

Other than uses (1), (2), and (3) above, the CAP does not authorize any use of the templates in electronic medical records systems, pathology informatics systems, cancer registry computer systems, computerized databases, mappings between coding works, or any computerized system without a written license from the CAP.

Any public dissemination of the original or modified templates is prohibited without a written license from the CAP.

The College of American Pathologists offers these templates to assist pathologists in providing clinically useful and relevant information when reporting results of biomarker testing. The College regards the reporting elements in the templates as important elements of the biomarker test report, but the manner in which these elements are reported is at the discretion of each specific pathologist, taking into account clinician preferences, institutional policies, and individual practice.

The College developed these templates as educational tools to assist pathologists in the useful reporting of relevant information. It did not issue them for use in litigation, reimbursement, or other contexts. Nevertheless, the College recognizes that the templates might be used by hospitals, attorneys, payers, and others. The College cautions that use of the templates other than for their intended educational purpose may involve additional considerations that are beyond the scope of this document.

The inclusion of a product name or service in a CAP publication should not be construed as an endorsement of such product or service, nor is failure to include the name of a product or service to be construed as disapproval.
Version Code
The definition of the version code can be found at www.cap.org/cancerprotocols.

Version: CML_Biomarkers 1.0.0.0

Summary of Changes
This is a new template.
CML Biomarker Reporting Template

Template web posting date: December 2014

Completion of the template is the responsibility of the laboratory performing the biomarker testing and/or providing the interpretation. When both testing and interpretation are performed elsewhere (e.g., a reference laboratory), synoptic reporting of the results by the laboratory submitting the tissue for testing is also encouraged to ensure that all information is included in the patient’s medical record and thus readily available to the treating clinical team.

CHRONIC MYELOGENOUS LEUKEMIA, (BCR-ABL1+) MONITORING

Report a single response to each data element unless otherwise indicated.

Note: Use of this template is optional.

+ SPECIMEN TYPE

+ ___ Peripheral blood
+ ___ Bone marrow
+ ___ Other (specify): ______________________

+ RESULTS

+ Cytogenetic Testing Results (karyotype)

+ ___ No abnormalities detected
+ ___ t(9;22)(q34;q11.2): BCR-ABL1 (Philadelphia chromosome [Ph]) detected
 + Total number of metaphases examined: ______
 + Number of Ph+ metaphases: ______
+ ___ Other abnormalities detected (specify): ______________________

+ BCR-ABL1 Testing by Fluorescence In Situ Hybridization (FISH)

+ ___ No BCR-ABL1 fusions detected
+ ___ BCR-ABL1 fusions detected
 + Total number of cells examined: ______
 + Number of BCR-ABL1 positive cells: ______
+ ___ BCR-ABL1 amplification (duplication) detected: ______ copies/cell

+ Quantitative BCR-ABL1 Transcript Reverse Transcription Polymerase Chain Reaction (RT-PCR) Testing

+ ___ No BCR-ABL1 transcripts detected
+ ___ BCR-ABL1, p210 type (e13/14a2) transcripts detected
 + Normalized copy number (e13/14a2 transcripts/reference gene): ______
 + Percent BCR-ABL1 (International Scale [IS]): ______%
+ ___ BCR-ABL1, p190 type (e1a2) transcripts detected
 + Normalized copy number (e1a2 transcripts/reference gene): ______
+ ___ Other BCR-ABL1 transcripts detected (ie. e19a2; p230 type)
 (specify): ______________________
+ Normalized copy number (other BCR-ABL1 transcripts/reference gene): ______

+ **BCR-ABL1 Mutation Analysis**
+ ___ No mutation detected
+ ___ Mutation(s) detected
 + ___ p.T315I mutation
 + ___ Other (specify): __________________________
+ Significance of mutation:
 + ___ Reported to confer resistance to tyrosine kinase inhibitors (TKIs)
 + ___ Unknown resistance profile
 + ___ Normal sequence variant and/or not associated with resistance

+ **Comparison to Prior Studies**
+ Date of most recent cytogenetic study: ______________
+ Most recent cytogenetic results:
 + ___ No abnormalities detected
 + ___ t(9;22)(q34;q11.2): BCR-ABL1 (Philadelphia chromosome [Ph]) detected
 + Total Number of metaphases examined: ______
 + Number of Ph+ metaphases: ______
 + ___ Other abnormalities detected (specify): __________________________

+ Date of most recent FISH study: ______________
+ Most recent FISH results:
 + ___ No BCR-ABL1 fusions detected
 + ___ BCR-ABL1 fusions detected
 + Total number of cells examined: ______
 + Number of BCR-ABL1 positive cells: ______
 + ___ BCR-ABL1 amplification (duplication) detected: ______ copies/cell

+ Date of most recent BCR-ABL1 quantitative RT-PCR study: ______________
+ Most recent BCR-ABL1 quantitative RT-PCR results:
 + ___ No BCR-ABL1 transcripts detected
 + ___ BCR-ABL1 (e13/14a2; p210 type) transcripts detected
 + e13/14a2 normalized copy number: ______
 + Percent BCR-ABL1 (International Scale [IS]): ______%
 + ___ BCR-ABL1 (e1a2; p190 type) transcripts detected
 + e1a2 normalized copy number: ______
 + ___ Other BCR-ABL1 transcripts detected (specify type): __________________________
 + Normalized copy number: __________________________

+ **METHODS**

+ **Quantitative BCR-ABL1 Transcript RT-PCR Testing**
+ BCR-ABL1 RT-PCR assay sensitivity: ______________
+ Fusion transcripts covered
 + ___ e13/14a2 (p210)
 + ___ e1a2 (p190)
 + ___ Other (specify): __________________________
+ **BCR-ABL1 Mutation Analysis**
 + **BCR-ABL1** mutation analysis assay sensitivity: _________________
 + **BCR-ABL1** mutation analysis assay coverage
 + **ABL1** codons _____ through _____ or list: ______________________
 + **BCR-ABL1** mutation analysis method:
 + ___ Sanger sequencing
 + ___ Pyrosequencing
 + ___ Allele specific-PCR
 + ___ DHPLC
 + ___ Next-generation (massively parallel) sequencing
 + ___ Other (specify): __________________
 + **BCR-ABL1** reference sequence accession number (if applicable):_______________

+ Data elements preceded by this symbol are not required.
CML Patients Undergoing Treatment with TKIs May Manifest Signs of Therapeutic Resistance

CML (Chronic Myelogenous Leukemia) is characterized by the presence of an abnormal clonal myeloid population harboring t(9;22)(q34;q11.2) (known as the Philadelphia chromosome [Ph]) resulting in the presence of BCR-ABL1 mRNA transcripts and an abnormal fusion protein with constitutive ABL1 tyrosine kinase activity. Detection and monitoring of t(9;22)(q34;q11.2) or BCR-ABL1 fusion transcripts by a variety of laboratory methods, including classical cytogenetic karyotyping, fluorescence in situ hybridization (FISH), and quantitative reverse transcription polymerase chain reaction (qRT-PCR) provides an effective way to assess the response to tyrosine kinase inhibitor (TKI) therapy. Furthermore, these techniques provide a mechanism for the early detection of emerging TKI resistance and for identifying newly acquired genetic abnormalities that may be associated with transformation to a more aggressive phase of disease or with resistance to particular TKIs. Clear, concise, and accurate reporting of results is extremely important for effective clinical management. The National Comprehensive Cancer Network (NCCN) publishes extensive clinical guidelines for appropriate laboratory monitoring of CML patients to ensure accurate characterization of the hematologic, cytogenetic and molecular response to therapy. The NCCN guidelines continue to evolve and should be consulted for the most up-to-date recommendations.

Cytogenetic Analysis

Cytogenetic analysis is typically performed at diagnosis and at certain intervals during treatment with TKIs, particularly if there is evidence of a suboptimal therapeutic response or evidence of emerging resistance. Although karyotyping is the least sensitive method for detecting t(9;22)(q34;q11.2), it is essential for establishing the depth of the cytogenetic response to therapy and for assessing whether or not important therapeutic milestones have been met. Cytogenetic analysis is also critical for the detection of additional abnormalities that are commonly present at disease progression such as trisomy 8 (+8) or isochromosome 17q [i(17q)], among others. Reporting of the cytogenetic results should include the total number of metaphases examined and the number of Ph+ metaphases as well as any additional abnormalities that are identified. FISH for BCR-ABL1 fusions is often used as an adjunct to karyotyping due to the increased sensitivity of the technique. It may also allow for the detection of rare cryptic translocations that are otherwise undetectable by karyotyping. It is important to report FISH results with the total number of cells analyzed along with the number of BCR-ABL1-positive cells. FISH is also important for detecting genomic duplication or amplification of the BCR-ABL1 locus, which may contribute to TKI resistance in a subset of CML patients.

BCR-ABL1 qRT-PCR Testing

BCR-ABL1 qRT-PCR testing is the most sensitive method for the detection and monitoring of the abnormal fusion transcripts and may be performed on peripheral blood or bone marrow samples. Unless otherwise clinically indicated, it is not necessary to obtain bone marrow specifically for molecular testing. In an effort to promote the standardization of qRT-PCR reporting and the interlaboratory comparison of test results, a standardized reporting scale, known as the International Scale (IS) was introduced and has been widely adopted by laboratories worldwide. Serial testing of patients by qRT-PCR during TKI therapy allows for the accurate assessment of important molecular treatment milestones. Importantly, both the depth and the kinetics of the response are critical for the evaluation of therapeutic efficacy and for the assignment of overall prognosis. A major molecular response (MMR) is defined as BCR-ABL1 qRT-PCR values ≤0.1% IS, a 3-log reduction from the standardized baseline. A complete molecular response (CMR) is defined as undetectable BCR-ABL1 levels using a test with 4.5-log sensitivity. The definition of CMR highlights the importance of test performance characteristics such as sensitivity. In order to evaluate the response kinetics it is necessary to place current results in the appropriate clinical context using the clinical history and the results of prior testing. For simplicity, this reporting template includes space for only a single prior test result, but this issue may be revisited in future template updates.

CML patients undergoing treatment with TKIs may manifest signs of therapeutic resistance in a variety of ways, including progression to accelerated or blast phase, failure to achieve timely cytogenetic or
molecular milestones, or with signs of the loss of a previously achieved response. A subset of patients may acquire resistance to TKI therapy due to substitution mutations in the translocated ABL1 kinase domain. Specific mutations may impart resistance to certain, but not other, kinase inhibitors. Because the choice of subsequent TKI therapy depends on the identity of the mutation detected, it is important to report this information clearly in terms of the amino acid change (ie, p.F359V). In most current studies, the most commonly detected mutation in resistant CML patients is p.T315I, an abnormality which promotes resistance to all but one of the currently approved TKIs (as of January 2014). A number of germline polymorphisms also occur in the ABL1 kinase domain and should not be confused with true resistance mutations. Insertion and deletion type mutations (in/dels) occur as well but have uncertain clinical significance. Rare mutations are identified in signaling domains in the translocated ABL1 sequence called the Src homology-2 (SH2) and Src homology-3 (SH3) domains. Most current BCR-ABL1 mutation tests are focused on the kinase domain and do not provide information on potential SH2/SH3 mutations, but certain rare mutations in these domains have also been reported to confer resistance to TKI therapy.

References