Template for Reporting Results of Biomarker Testing of Specimens From Patients With Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma

Template web posting date: July 2015

Authors
Eric Duncavage, MD, FCAP
Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri

Ranjana H. Advani, MD
Oncology Division, Stanford University Medical Center, Stanford, California

Steven Agosti, MD, FCAP
Pathology & Laboratory Medicine Service, James A. Haley Veterans Affairs Medical Center, Tampa, Florida

Randa Alsabeh, MD, FCAP
Department of Pathology, Kaiser Permanente Medical Center, Los Angeles, California

Philip Foulis, MD, FCAP
Pathology & Laboratory Medicine Service, James A. Haley Veterans Affairs Medical Center, Tampa, Florida

Christine Gibson, CTR
Moffitt Cancer Center, Tampa, Florida

Loveleen Kang, MD, FCAP
Pathology & Laboratory Medicine Service, James A. Haley Veterans Affairs Medical Center, Tampa, Florida

Joseph D Khoury, MD
Department Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas

L. Jeffrey Medeiros, MD, FCAP
Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas

Robert S. Ohgami, MD, PhD, FCAP
Department of Pathology, Stanford Hospital and Clinics, Stanford, California

Dennis P. O'Malley, MD, FCAP
Department of Pathology, Clarient Pathology Services, Aliso Viejo, California

Keyur P. Patel, MD, PhD, FCAP
Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas

Carla Wilson, MD, PhD, FCAP
Department of Hematopathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico

For the Members of the Cancer Biomarker Reporting Committee, College of American Pathologists
© 2015 College of American Pathologists (CAP). All rights reserved.

The College does not permit reproduction of any substantial portion of these templates without its written authorization. The College hereby authorizes use of these templates by physicians and other health care providers in reporting results of biomarker testing on patient specimens, in teaching, and in carrying out medical research for nonprofit purposes. This authorization does not extend to reproduction or other use of any substantial portion of these templates for commercial purposes without the written consent of the College.

The CAP also authorizes physicians and other health care practitioners to make modified versions of the templates solely for their individual use in reporting results of biomarker testing for individual patients, teaching, and carrying out medical research for non-profit purposes.

The CAP further authorizes the following uses by physicians and other health care practitioners, in reporting on surgical specimens for individual patients, in teaching, and in carrying out medical research for non-profit purposes: (1) Dictation from the original or modified templates for the purposes of creating a text-based patient record on paper, or in a word processing document; (2) Copying from the original or modified templates into a text-based patient record on paper, or in a word processing document; (3) The use of a computerized system for items (1) and (2), provided that the template data is stored intact as a single text-based document, and is not stored as multiple discrete data fields.

Other than uses (1), (2), and (3) above, the CAP does not authorize any use of the templates in electronic medical records systems, pathology informatics systems, cancer registry computer systems, computerized databases, mappings between coding works, or any computerized system without a written license from the CAP.

Any public dissemination of the original or modified templates is prohibited without a written license from the CAP.

The College of American Pathologists offers these templates to assist pathologists in providing clinically useful and relevant information when reporting results of biomarker testing. The College regards the reporting elements in the templates as important elements of the biomarker test report, but the manner in which these elements are reported is at the discretion of each specific pathologist, taking into account clinician preferences, institutional policies, and individual practice.

The College developed these templates as educational tools to assist pathologists in the useful reporting of relevant information. It did not issue them for use in litigation, reimbursement, or other contexts. Nevertheless, the College recognizes that the templates might be used by hospitals, attorneys, payers, and others. The College cautions that use of the templates other than for their intended educational purpose may involve additional considerations that are beyond the scope of this document.

The inclusion of a product name or service in a CAP publication should not be construed as an endorsement of such product or service, nor is failure to include the name of a product or service to be construed as disapproval.
Version Code
The definition of version control and an explanation of version codes can be found at www.cap.org (search: cancer protocol terms).

Version: CLL_Biomarkers 1.0.0.1

Summary of Changes

RESULTS
The following note was added:
Note: If a marker is tested by more than one method (eg, polymerase chain reaction and immunohistochemistry), please document the additional result(s) and method(s) in the Comments section of the report.

The following data elements were changed to “select all that apply”:
Statistical Abnormalities
Protein Expression

Sequence Based Testing
Somatic gene mutations
Added: ___ Other gene mutation(s) (specify): _________________________________
___ Not detected
___ Detected (specify variant): _________________________________

METHODS

Added unit of measure (kbp) to:
Molecular Testing
Array platform: ______________________________
Minimum size of detected copy number variation (CNV): _______ kbp

Added the following data element and notes:

+ COMMENT(S)

All reported gene sequence variations should be identified following the recommendations of the Human Genome Variation Society (www.hgvs.org/mutnomen/; accessed February 10, 2015).
Completion of the template is the responsibility of the laboratory performing the biomarker testing and/or providing the interpretation. When both testing and interpretation are performed elsewhere (e.g., a reference laboratory), synoptic reporting of the results by the laboratory submitting the tissue for testing is also encouraged to ensure that all information is included in the patient’s medical record and thus readily available to the treating clinical team.

CHRONIC LYMPHOCYTIC LEUKEMIA/SMALL LYMPHOCYTIC LYMPHOMA (CLL)

Select a single response unless otherwise indicated.

Note: Use of this template is optional.

SPECIMEN TYPE
- ___ Peripheral blood
- ___ Bone marrow
- ___ Lymph node (specify site): ___________________
- ___ Other (specify): ____________________

RESULTS

Note: If a marker is tested by more than one method (e.g., polymerase chain reaction and immunohistochemistry), please document the additional result(s) and method(s) in the Comments section of the report.

Chromosomal Abnormalities (Note B) (select all that apply)
- ___ 13q deletion
 - ___ Not detected
 - ___ Detected
 - ___ Other abnormal signal patterns (specify): _______________
- ___ Trisomy 12
 - ___ Not detected
 - ___ Detected
 - ___ Other abnormal signal patterns (specify): _______________
- ___ 11q deletion
 - ___ Not detected
 - ___ Detected
 - ___ Other abnormal signal patterns (specify): _______________
- ___ 17p deletion
 - ___ Not detected
 - ___ Detected
 - ___ Other abnormal signal patterns (specify): _______________
- Other probes tested
 - Specify probe: ___________________
 - Specify results: ___________________
- Additional copy number variations noted
 - Gains (specify regions): ___________________
 - Losses (specify regions): ___________________
+ Loss of heterozygosity
 + ___ Not identified
 + ___ Identified (specify regions): ____________________________
+ Cytogenetic testing complete karyotype (specify): __________________________

+ Protein Expression (Notes C and D) (select all that apply)
+ ___ ZAP-70
 + ___ Not expressed (percent of CLL cells positive): ____________
 + ___ Expressed (percent of CLL cells positive): ____________
+ ___ CD38
 + ___ Not expressed (percent of CLL cells positive): ____________
 + ___ Expressed (percent of CLL cells positive): ____________

+ Sequence Based Testing
+ Immunoglobulin heavy chains (IgVH) hypermutation status
 + ___ Mutated (≤97% identity to reference)
 + ___ Unmutated (≥98% identity to reference)
 + ___ Borderline (>97% and <98% identity to reference)
+ IGHV3-21 usage
 + ___ Not detected
 + ___ Detected
+ Somatic gene mutations
 + ___ TP53
 + ___ Not detected
 + ___ Detected (specify variant): ____________________________
 + ___ Other gene mutation(s) (specify): ____________________________
 + ___ Not detected
 + ___ Detected (specify variant): ____________________________
+ Other markers tested
 + Specify marker: _________________________
 + Specify results: __________________________

+ METHODS

+ Chromosomal Abnormalities
 + ___ Chromosomal array
 + ___ Fluorescence in situ hybridization (FISH)
 + ___ Conventional karyotype

+ Molecular Testing
+ Array platform: ____________________________
 + Minimum size of detected copy number variation (CNV): _____ kbp
+ Gene sequencing platform: ____________________________
 + Maximum sensitivity (variant allele frequency): ____________________________
 + Genes/exons sequenced: ____________________________

+ Protein Expression (Notes C and D)
+ ___ Flow cytometry
+ ___ Immunohistochemistry

+ ZAP-70 positive threshold: ____________________________
+ CD38 positive threshold: ____________________________

+ Data elements preceded by this symbol are not required.

All reported gene sequence variations should be identified following the recommendations of the Human Genome Variation Society (www.hgvs.org/mutnomen; accessed February 10, 2015).
Explanatory Notes

A. Introduction
Somatic mutation in the rearranged variable regions of immunoglobulin heavy chains (IgVH) has been reported to be of prognostic importance since 1999.¹² Patients with IgVH unmutated genes have a more aggressive disease and are more resistant to therapy than those with mutated IgVH genes. Most researchers defined unmutated IgVH based on 98% or more homology to reference and mutated IgVH with less than or equal to 97% homology to reference.³ Determining IgVH mutations requires specific equipment and is laborious, expensive, and time-consuming. Due to all these limitations, surrogate markers including CD38 and ZAP-70, with the similar prognostic value as IgVH mutation status are more widely used.

Detection of immunoglobulin VH3-21 usage by sequencing of IgH rearrangements has been associated with poor outcome in CLL and should be reported when detected by IgH sequencing.

B. Prognosis in CLL FISH
Del 11q contains several tumor suppressor genes including ATM.⁴,⁵ This gene is associated with cell cycle regulation and p53 pathway activation. BIRC3, which is also in the deleted region of interest, is a candidate gene that may also play a role in CLL pathobiology. Del 11q is associated with younger age and poor prognosis.

Del 13q is often seen as a sole abnormality in CLL.⁴,⁵ It is associated with a favorable prognosis. Several genes and micro-RNAs (mRNA) have been suggested as candidate genes in these cases of CLL. Del 17p is thought to affect the TP53 gene, a key regulator of cell cycle.⁴,⁵ Other deleted genes may also play a role. Patients with del17p will often have other genetic abnormalities and other poor prognosis markers.

Trisomy 12 (+12) affects CLL by an unknown mechanism.⁴,⁵ Patients with trisomy 12 have a good response to treatment. Some additional trisomies (+19, +19) are seen in association with trisomy 12.

<table>
<thead>
<tr>
<th>Marker</th>
<th>Approx. Frequency</th>
<th>Prognosis</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Del 13q14</td>
<td>35%-45%</td>
<td>Low risk</td>
<td></td>
</tr>
<tr>
<td>Trisomy 12</td>
<td>11%-16%</td>
<td>Intermediate-High risk</td>
<td></td>
</tr>
<tr>
<td>Del 11q22-23 (ATM; BIRC3)</td>
<td>10%-17%</td>
<td>Intermediate-High risk</td>
<td>Bulky disease, aggressive clinical course, shorter survival</td>
</tr>
<tr>
<td>Del 17p (TP53)</td>
<td>3%-7%</td>
<td>High risk</td>
<td>Frequently no response to therapy or relapse after therapy</td>
</tr>
<tr>
<td>No abnormalities by FISH</td>
<td></td>
<td>Low-Intermediate risk</td>
<td></td>
</tr>
</tbody>
</table>

C. CD38 Expression
CD38 is a 45 kDa transmembrane glycoprotein that was the first maker found to correlate with IgVH mutation.² Patients with CD38-positive cells have unmutated IgVH genes and higher need for chemotherapy as well as shorter overall survival. However, subsequent studies showed that association between mutation status and CD38 expression level was not absolute and that CD38 expression should be considered as an independent prognostic marker in CLL.⁶ CD38 expression is determined by flow cytometry. A 30% cutoff level is generally used empirically to classify CD38-positive and CD38-negative patients; individual laboratories should determine their own criteria for calling CD38-positive and CD38-negative cases, and specific laboratory cut-offs should be described in the methods section above.¹,⁶ CD38 expression may vary over time and may show a bimodal expression profile.⁴

D. ZAP-70 Expression
Comparative microarray studies performed on cases of CLL with mutated and unmutated IgVH genes showed differential expression of gene encoding for zeta-associated protein of 70 kDa (ZAP-70).⁷ Zap-70 is normally
expressed in T cells and NK cells. The majority of the CLL cases with mutated IgVH are ZAP-70 negative, while cases with unmutated IgVH are ZAP-70 positive. ZAP-70 expression in CLL cells can be determined by various methods including western blotting, quantitative reverse transcription polymerase chain reaction (RT-PCR), immunohistochemistry, and flow cytometry. However, flow cytometry is the preferred technique for assessing ZAP-70 expression in CLL cells. Flow cytometry allows simultaneous evaluation of ZAP-70 protein expression in CLL cells and normal lymphocytes. A 20% cutoff threshold is commonly used to separate ZAP-70-negative from ZAP-70-positive CLL cases; however, this threshold may vary significantly from laboratory to laboratory depending on how negative controls are defined.

There is inherent laboratory-to-laboratory variability in ZAP-70 testing due to the following: different antibody clones used (variable antigen affinity), different conjugated fluorochromes (variable intensity), variable methods of cell permeabilization (for intracellular staining), variable staining procedures, variable gating procedures, and variable reporting methods. Moreover, ZAP-70 is a labile protein; most consensus guidelines recommend ZAP-70 testing within 24 hours of sample collection. Laboratories should establish firm gating criteria for sample collection and determine reference populations at the point of method validation of their assay to ensure optimal interassay precision. Different gating strategies are discussed extensively in a prior multicenter international harmonization study.

References